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1. Abstract

Our goal was to develop novel multiparticle computational tools for materials
science based on representing operators and functions of many variables as short
sums of separable functions.

We have extended multiresolution separated representation of free-space Green’s
functions to those periodic or satisfying boundary conditions, making fast algo-
rithms available for solving integral equations.

The problem of incorporating inter-electron cusps within two-particle methods
led us to the problem of approximating multivariable functions by sums of prod-
ucts of Gaussians. We have developed and tested a new (suboptimal) algorithm,
sufficient for many practical purposes. Using this algorithm we constructed novel
separated representations of non-convolutional Green’s functions and spectral pro-
jectors for operators with potentials from the Rollnik class. Such potentials include
all physically significant potentials considered within a finite domain. For optimal
representations, we have developed an algorithm in the case of two variables; ex-
tensions to higher dimensions need to be worked on further. We started work on
moving preliminary implementations of these algoritrhms into the Python environ-
ment where they can be used for practical computations.

We have developed the algorithmic framework for a size-extensive/consistent
method for the multiparticle Schrodinger equation. The central computation in-
volved has revealed a center-of-mass principle for electrons, which gives hope for the
construction of an analogue of the Fast Multipole Method for quantum mechanical
systems.

2. Tasks

Our work addresses three tasks in using separated representations [11, 9] for com-
putational materials science. In our proposal we organized these tasks by increasing
degree of difficulty. They are:

1. Incorporating multiresolution separated representations into existing methods
in materials science (where the underlying dimension is three) and, thus, sim-
plifying computations involving Green’s functions with boundary conditions
(or periodic)

2. “Upgrading” computational chemistry from one-particle theories to using two-
particle theories (with underlying dimension six).

1



SEPARATED REPRESENTATIONS FOR COMPUTATIONAL MATERIALS SCIENCE 2

3. Developing methods for solving the multiparticle Schrödinger equation of
quantum mechanics, where the dimension grows linearly with the number
of particles. In particular, our goal is finding computational methods that
incorporate algorithmic size-extensivity.

3. Results for Task 1: Multiresolution separated representations of

Green’s functions with boundary conditions

Our goal has been to obtain multiresolution representations of lattice sums for
Green’s functions (as well as potentials) in a form that facilitates solving inte-
gral equations. We note that computations involving multidimensional free space
Green’s functions are greatly simplified by using separated representations [11, 9,
28, 30, 50, 51, 22, 8]. Using lattice sums, we have constructed separated representa-
tions of Green’s functions with periodic, Dirichlet or Neumann boundary conditions.
Such lattice sums are not absolutely convergent and we have developed an explicit
multiresolution interpretation of these sums.

Our approach is based on representing spherically symmetric functions by sums
of products of Gaussians. Such approximations are obtained by discretizing inte-
grals which are similar, or even identical, to those used in the Ewald summation.
However, even though conceptually our construction has strong similarities with
the Ewald summation, it differs in important details. We compute separated rep-
resentations of lattice sums using only one dimensional integrals or sums. The
resulting approximation is a combinations of three terms, a smooth periodic term
with a short Fourier expansion, and two terms, a singular and non-singular, the
sum of which is near zero outside the ball inscribed into a unit cell (for any finite
but arbitrary accuracy). The number of terms needed in the final representation is
(nearly) optimal.

3.1. Technical Introduction: separated representations of lattice sums.

A practical way of computing Green’s functions and periodic potentials via lattice
sums has been of interest for many years. An early seminal contribution was made
by P. Ewald [21], although the history of lattice sums starts earlier and we refer to
[25] for a historical overview and results prior to 1980. A more recent fundamental
advance was made in [32], where a surprisingly simple integral representations of
harmonic lattice sums has been derived.

Our goal is to compute representations of lattice sums for Green’s functions
and potentials in a form that facilitates solving integral equations. We note that
computations involving multidimensional free space Green’s functions are greatly
simplified by using separated representations [9, 10, 28, 30, 50, 51, 22, 8]. Using
the lattice sums, we construct separated representations of Green’s functions with
periodic or zero boundary conditions. Such lattice sums are not absolutely conver-
gent and we develop an explicit multiresolution interpretation of these sums. We
note that we selected the Green’s functions for the Poisson and the bound state
Helmholtz operators as examples since the same method applies equally well to
other non-oscillatory Green’s functions.

For spherically symmetric singular potentials it has been traditional to rely on
spherical harmonics as a tool for computing lattice sums. The essential difficulty
in such approach is to combine together local spherical symmetry and summation
over directional shifts. In our approach we avoid this difficulty by representing
spherically symmetric functions in the Cartesian system of coordinates by using
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sums of products of Gaussians. Such separated representations are constructed to
be accurate over a remarkably wide range of spatial scales since the number of terms
grows only as O(− log(δ)), where δ is the distance away from the singularity. The
summation over directional shifts then proceeds in the term by term fashion and
involves sums only over one-dimensional lattices.

3.2. Preliminary Considerations.

3.2.1. Separated representations for Poisson-type kernels. Let us construct a sepa-
rated approximation of the function 1/rα, where r = ||x||, x ∈ R

3 using a collection
of Gaussians. The approximation is obtained by first discretizing the integral

1

rα
=

2

Γ(α/2)

∫ ∞

−∞

e−r2e2s+αs ds .(3.1)

For α = 1 it is the same integral as used in the Ewald summation (up to a change
of variables, see e.g., [25]). We have

Proposition 3.1. For any α > 0, 0 < δ ≤ 1, and 0 < ε ≤ min
{

1
2 ,

8
α

}

, there exist
positive numbers pm and wm such that

∣

∣

∣

1

rα
−

M
∑

m=1

wme
−pmr2

∣

∣

∣ ≤ ε

rα
,(3.2)

where

M = log ε−1[c0 + c1 log ε−1 + c2 log δ−1],(3.3)

where c1, c2 and c3 are constants that only depend on α. For fixed power α and
accuracy ε, we have M = O(log δ−1).

A proof of Proposition 3.1 can be found in [13].
Using r = ||x||, where x = (x1, x2, x3), and α = 1 in (3.2), we arrive at a

separated representation for the Poisson kernel. Although in this paper we compute
the lattice sums corresponding to the Poisson kernel, the same approach will work
for any α > 0 as well as other spherically symmetric potentials, e.g. Yukawa
potential e−µr/r.

As in [28, 30], the approximation in (3.2) is obtained using trapezoidal rule. First,
we discretize the integral (3.1), namely, set pm = e2sm and wm = 2∆s eαsm/Γ(α/2),
where sm = s0 + (m − 1)∆s, m = 1 . . . ,M . For a given accuracy ε and range
0 < δ ≤ r ≤ 1, we select s0 and sM = s0 + (M − 1)∆s, the end points of the
interval of integration replacing the real line in (3.1), so that at these points the

function f(s) = e−r2e2s+αs and a sufficient number of its derivatives are close to
zero to within the desired accuracy. We also select M , the number of points in the
quadrature, so that the accuracy requirement is satisfied.

3.2.2. The cross-correlation functions. We use the scaling functions of the multi-
wavelet bases developed in [2]. For a brief review of the multiwavelet bases see
also [3]. For convolution operators we only need to compute integrals with the
cross-correlation functions of the scaling functions, namely,

Φii′(x) =







Φ+
ii′(x), 0 ≤ x ≤ 1,

Φ−
ii′(x), −1 ≤ x < 0,
0, 1 < |x|,

(3.4)
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where i, i′ = 0, . . . ,m− 1, m is the order of the basis, and

Φ+
ii′(x) =

∫ 1−x

0

φi(x+ y)φi′(y)dy , Φ−
ii′(x) =

∫ 0

−x

φi(x+ y)φi′(y)dy .(3.5)

The scaling functions φi are the normalized Legendre polynomials on the interval
[0, 1],

φi(x) =

{ √
2i+ 1Pi(2x− 1), x ∈ [0, 1]

0, x /∈ [0, 1]
,

where Pi are the Legendre polynomials on [−1, 1]. This implies that the functions
Φii′ are piecewise polynomials of degree i+ i′ + 1 with the support in [−1, 1].

Proposition 3.2.

1. Transposition of indices: Φii′(x) = (−1)i+i′Φi′i(x),

2. Relations between Φ+and Φ−: Φ−
i,i′(−x) = (−1)i+i′Φ+

i,i′(x) for 0 ≤ x ≤ 1,

3. Values at zero: Φii′(0) = 0 if i 6= i′, and Φii(0) = 1 for i = 0, . . . ,m− 1,

4. Upper bound: maxx∈[−1,1] |Φii′(x)| ≤ 1 for i, i′ = 0, . . . ,m− 1,

5. Connection with the Gegenbauer polynomials:

Φ+
00(x) = 1

2 C
(−1/2)
1 (2x− 1) + 1

2 and Φ+
l0(x) = 1

2

√
2l + 1C

(−1/2)
l+1 (2x − 1), for

l = 1, 2, . . . , where C
(−1/2)
l+1 is the Gegenbauer polynomial,

6. Linear expansion: Φ+
ii′(x) are linear combinations

Φ+
ii′(x) =

i′+i
∑

l=i′−i

clii′Φ
+
l0(x),(3.6)

where

clii′ =

∫ 1

0

Φ+
ii′(x)Φ

+
l0(x)(1− x2)−1dx.(3.7)

7. Vanishing moments: we have
∫ 1

−1
Φ00(x) dx = 1 and

∫ 1

−1
xkΦii′(x) dx = 0 for

i+ i′ ≥ 1 and 0 ≤ k ≤ i+ i′ − 1.

3.3. Multiresolution representation of lattice sums. Since the sum in (3.14)
is not absolutely convergent, we need to provide its interpretation. Our derivation
in previous sections used the usual justification for Ewald summation, see e.g. [25].
In this section we interpret the divergent sum in (3.14) using multiresolution repre-
sentation of the Poisson kernel as a starting point. This allows us to obtain simple
and transparent conditions for the shape of the domain over which the summation
is performed as well as to observe that the complexity of the algorithm to apply the
periodic Green’s function is the same as that for the Green’s function in R

3 where
the differences between the two occurs only on coarse scales.

Let us begin with the multiresolution representation of the Poisson kernel in
R

3. We use multiwavelet bases [2] as we find them more appropriate for numerical
applications [3], [30] although other wavelet bases may be used in this construction
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as well. The multiwavelet bases are constructed in L2(B), B = [−1/2, 1/2]3and
then extended to form a basis in L2(R3) by replicating the construction for each
cube shifted by n ∈ Z

3 (see e.g. [3]). Let Vj ∈ L2(R3) denote subspaces of the
multiresolution analysis corresponding to a multiwavelet basis of order m, where m

is the number of nodes in the Gaussian quadrature (in each direction). We then
have

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vj · · ·

or, for each Vn,

Vn = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wn−1

where Vj ⊕Wj = Vj+1. The subspace V0 is spanned by products of orthogonal
polynomials up to degree m − 1 in each variable localized within cubes shifted by
n ∈ Z

3.
Let Pj and Qj denote the orthogonal projectors on spaces Vj and Wj , respec-

tively. Given an operator T , we obtain its telescopic series as

T = T0 + (T1 − T0) + (T2 − T1) + . . . ,

where Tj = PjTPj is the projection of the operator T on the subspace Vj . It is
easy to see that

Tj+1 − Tj = QjTQj +QjTPj + PjTQj ,

is the element of the non-standard form of the operator T on the scale j [6]. It was
shown in [6] that the vanishing moments of the wavelet basis (this property remains
unchanged for multiwavelets) yield a rapid decay of the coefficients of Tj+1−Tj away
from the singularity of the kernel. The rate of decay is controlled by the number
of the vanishing moments which we choose depending on the accuracy requirement
as will be explained below. By choosing m > 2, we assure the rate of decay of at
least 1/rm+1 for all terms in the telescopic series except for T0. If we now sum over
the periodic lattice, separately on each scale, the sum is rapidly convergent for all
terms except that for T0. In fact, by selecting the number of vanishing moments of
the basis, we control the rate of decay and may choose that number so that for a
fixed but arbitrary precision the contribution of all outside terms is negligible.

What remains to be shown is how to perform the summation on V0, making
it the key to the multiresolution definition of the periodic Green’s function. The
projection T0 of the Poisson kernel is given by the integrals

tnii′,jj′,kk′ =

∫

B

1

||x + n|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx ,(3.8)

where n ∈ Z
3, B = [−1/2, 1/2]3, x = (x1, x2, x3), i, i

′, j, j′, k, k′ = 0, . . . ,m− 1 and
m is the order of the basis (the number of nodes in the Gaussian quadrature). We
now need to interpret

tper
ii′,jj′,kk′ =

∑

n∈Z3

tnii′,jj′,kk′ =
∑

n∈Z3

∫

B

1

||x + n|| Φii′(x1) Φjj′(x2) Φkk′(x3) dx ,

(3.9)

integrals with cross-correlation functions rather than the sum in (3.14).
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Let us consider tnii′,jj′,kk′ as a function of n ∈ Z
3. Using

1

||x + n|| =
1

||n|| −
x · n
||n||3 −

1

2

||x||2
||n||3 +

3

2

(x · n)2

||n||5 +O(
1

||n||4 ),(3.10)

we observe that the coefficient tper
00,00,00 cannot be given any meaning through the

sum in (3.9). However, if we apply the resulting operator to periodic functions with
zero mean, then the coefficient tper

00,00,00 is not needed and we simply set tper
00,00,00 = 0

rather than use (3.9).
For i + i′ ≥ 1 all functions Φii′ (see Section 3.2.2) have vanishing moments,

namely,
∫ 1

−1

Φii′(x)x
m dx = 0, 0 ≤ m ≤ i+ i′ − 1.(3.11)

Using (3.11) and (3.10), integrals (3.9) involving functions any function Φii′ with
indices i + i′ ≥ 3 result in a rapid decay of the coefficients tnii′,jj′,kk′ = O( 1

||n||4 )

and, therefore, the corresponding sum in (3.9) will converge absolutely.
Let us now examine integrals (3.9) involving function Φii′ with indices 1 ≤ i+i′ ≤

2. We find that not all slowly decaying terms in (3.10) vanish. For example, using
(3.9) and (3.10), and the fact that Φ01 is an odd function, we have

I01,00,00(n) =
n1

||n||3 (

∫ 1

−1

xΦ01(x)dx) (

∫ 1

−1

Φ00(x)dx)
2 +O(

1

||n||4 ),(3.12)

and, using the fact that Φ11 is an even function,

I11,00,00(n) =
2n2

1 − n2
2 − n2

3

2||n||5 (

∫ 1

−1

x2 Φ11(x)dx) (

∫ 1

−1

Φ00(x)dx)
2 +O(

1

||n||4 ).

(3.13)

In all of these cases (conditional) summation over symmetric ranges of indices can-
cels the first term and yields convergent sums for the coefficients tper

ii′,jj′,kk′ , thus
completing the multiresolution definition of the periodic Green’s function.

3.4. Lattice sums for 3D cubic lattice. Let us now describe how to use (3.2)
in a more traditional approach to lattice sums. Let us consider the cubic lattice
(with some modifications the results can be extended to a general lattice). Starting
with the free space Poisson kernel (or, alternatively, the Coulomb potential), let us
compute for x ∈ B,

G0(x) =
∑

n∈Z3

1

||x + n|| =
1

||x|| +
∑

n∈Z3

′ 1

||x + n|| ,(3.14)

where the unit cell B = [−1/2, 1/2]3. Formally G0 is the Green’s function in B,

−∇2G0(x) = 4πδ(x),

with the periodic boundary conditions. Since the sum (3.14) is not absolutely
convergent, summation in (3.14) needs a separate description. If we apply the
Green’s functionG0 only to periodic functions integrating to zero in B,

∫

B
f(x)dx =

0, then (3.14) is a conditionally convergent sum. Let us first assume that the
convergence issues are resolved via a procedure described in e.g. [25] or via a
multiresolution justification of such summation in Section 3.3.
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Figure 3.1. Relative error (log10) of approximating the Poisson
kernel in (3.15), where ε = 10−9, 1/2 ≤ ||x|| ≤ 1015 .

Let r0 = 1/2 be the radius of the ball inscribed into B . We rescale (3.2) to
approximate 1/r outside the ball B, in the region r ∈ [r0, R], where R is a large
number. We obtain for 1/2 ≤ r ≤ 1/(2δ),

|1
r
−

M
∑

m=1

ρme
−tmr2 | ≤ ε

r
,(3.15)

where tm = 4pmδ
2 and ρm = 2wmδ. The error ε(r) = r| 1r −

∑M
m=1 ρme

−tmr2 | is

illustrated in Figure 3.1. In this case M = 270, tm = e2τm and ρm = σ · eτm , where
τ0 = −59.004022799786696, ∆ = 0.22676579925650819, σ = 0.25587780369080371,
and τm = τ0 + ∆(m − 1) with m = 1, . . .M . As it turns out, we need only some
of these terms and we let the algorithm select the necessary ones. We note that in
this example the largest exponent in (3.15) is ≈ 54.

Assuming that we assign the lattice sum Σ′ a finite value following, for example,
the recipe in [25], we have formally

|
∑

n∈Z3

′ 1

||x + n|| −
∑M

m=1
ρm

∑

n∈Z3

′

e−tm||x+n||2 || ≤ ε
∑

n∈Z3

′ 1

||x + n|| .(3.16)

Using (3.14) and (3.16), we obtain an approximation to G0 as

Gappr
0 (x) =

1

||x|| −
M
∑

m=1

ρme
−tm||x||2 +Gper

0 (x),
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where Gper
0 is the periodic component,

Gper
0 (x) =

M
∑

m=1

ρm

∑

n∈Z3

e−tm||x+n||2 .(3.17)

By construction, for x ∈ B the combination

1

||x|| −
M
∑

m=1

ρme
−tm||x||2 ,(3.18)

is less than ε outside of the ball of radius 1/2. Evaluating the sum in (3.18) only for
x ∈ B, we significantly reduce the necessary number of terms, since within accuracy
ε contributions of many terms in (3.15) are accounted for by a constant.

Next let us compute the Fourier coefficients of the periodic function Gper
0 . We

have for p ∈ Z
3,

ĝp =

∫

B

(

M
∑

m=1

ρm

∑

n∈Z3

e−tm||x+n||2) e−2πix·pdx =

M
∑

m=1

ρm

∫

R3

e−tm||x||2 e−2πix·pdx,

and, therefore,

ĝp = π3/2
M
∑

m=1

ρm

t
3/2
m

e−π2
p

2/tm .(3.19)

The coefficient ĝ0 is not well-defined by (3.19), since as we improve the approxima-
tion (3.15), the expression (3.19) diverges. However, we only apply G0 to periodic
functions with zero mean; thus, we define Gper

0 using (3.19) for p 6= 0 and set
ĝ0 = 0. The Fourier coefficients decay rapidly and we arrive at the separated
representation,

Gper
0 (x) =

M
∑

m=1

ρm

∑

p∈Z3, p6=0

π3/2

t
3/2
m

e−π2
p

2/tme2πix·p.(3.20)

In (3.20) let us find M̂ ≤M such that

M
∑

m=M̂+1

ρm
π3/2

t
3/2
m

e−π2/tm ≤ ε.

We then have

Gper
0 (x) =

M̂
∑

m=1

ρm

∑

p∈Z3

π3/2

t
3/2
m

e−π2
p

2/tme2πix·p −
M̂
∑

m=1

ρm
π3/2

t
3/2
m

.(3.21)

3.5. Computing of Madelung Potentials. Let us consider potential defined by
the lattice sum

GM (x) =
∑

n∈Z3

(−1)n1+n2+n3

||x + n|| =
1

||x|| +
∑

n∈Z3

′ (−1)n1+n2+n3

||x + n|| ,(3.22)

describing the crystal lattice of NaCl. The function GM (x) is also the Green’s
function

−∇2GM (x) = 4πδ(x),
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in B = [−1/2, 1/2]3 with the zero boundary conditions. The second term in (3.22)
evaluated at zero is the Madelung constant,

µ =
∑

n∈Z3

′ (−1)n1+n2+n3

||n|| .

A careful computation of the value of Madelung constant µ = −1.74756459... can
be found in e.g. [15], and this potential and the constant have been computed by
a variety of methods [25] making it easy to compare with our approach. We have
from (3.15) and (3.16) an approximation

Gappr
M (x) =

1

||x|| −
M
∑

m=1

ρm e−tm||x||2 +

M
∑

m=1

ρmQ(tm, x1)Q(tm, x2)Q(tm, x3),

(3.23)

where

Q(τ, x) =
∑

n∈Z

(−1)n e−τ(x+n)2 =
∑

n∈Z

(e−4τ(x/2+n)2 − e−4τ(x/2+n+1/2)2).

For the Madelung constant we have

µ =

M
∑

m=1

ρm

∑

n∈Z3

′

e−tm||n||2(−1)n1+n2+n3 =

M
∑

m=1

ρm[
∑

n∈Z

(−1)n e−tmn2

]3 −
M
∑

m=1

ρm.

(3.24)

Let us compute the Fourier coefficients for Q(τ, x), a periodic function with the
period 2. We have

qk(τ) =
1

2

∫ 1

−1

Q(τ, x) e−πixk dx,

and, extending integration to (−∞,+∞),

qk(τ) =

∫ ∞

−∞

(e−4τx2 − e−4τ(x+1/2)2)e−2πixkdx =

√
π

2
√
τ
e−k2π2/(4τ)(1− (−1)k),

so that

Q(τ, x) =
∑

k∈Z

√
π√
τ
e−(k+1/2)2π2/τe2πix(k+1/2).

Thus, we arrive at (3.23) and an expression for the Madelung constant,

µ = π3/2
M
∑

m=1

ρm[
∑

n∈Z

1√
tm

e−(n+1/2)2π2/tm ]3 −
M
∑

m=1

ρm = −1.7475645946...

We note that computing of slowly (conditionally) convergent sum has been reduced
to an explicit expression involving only a small number of fast convergent sums over
a one-dimentional lattice.

We note that

| 1

||x|| −
M
∑

m=1

ρm e−tm||x||2 | ≤ ε

outside the ball of radius 1/2 and, thus, on the boundary of the cube B. Also
Q(t,±1/2) = 0 for any t > 0 so that Gappr

M (x) is the Green’s function of the
homogeneous boundary value problem in B with accuracy ε.
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Figure 3.2. A periodic part of the external contribution to the
Madelung potential (a 2D slice at z = 0).

4. Results for Task 2: Representation via Gaussians for

two-particle problems

One of the key aspects in our approach is to represent cusps due to electron-
electron interaction. For illustration, we consider the simplest two-particle problem,
the Helium atom. We have the Hamiltonian,

H = −1

2
∇2

1 −
1

2
∇2

2 −
2

||x1||
− 2

||x2||
+

1

||x1 − x2||
,(4.1)

and need to solve the eigenvalue problem,

HΨ = EΨ.(4.2)

Let us seek the ground state wave function in the form

Ψ(x1,x2) =
∑

ψme
−αm||x1||

2−βm||x1−x2||
2−γm||x2||

2

.(4.3)

In quantum chemistry such form of the wave function has been used before, see e.g.
[37], where the exponents αm, βm, γm were selected upfront and the coefficients
ψm computed to minimize the energy.

In our approach we solve for the exponents αm, βm, γm, the coefficients ψm

and the number of terms so that the wave function satisfies the equation with a
prescribed accuracy. Such approach is feasible since we can show that, after we
rewrite (4.2) as an integral equation (similar to what we do in [28, 30, 50, 51]),
the form of the wave function (4.3) is preserved under the iteration performed to
solve the equation. Since each iteration increases the number of terms, the problem
then is to develop an algorithm for reducing the number of terms in the separated
representation (4.3).
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This leads to the following problem: assuming that we are given a function

f(x1, x2, . . . xN ) =

M
∑

m=1

wme
−

PN
j=1 τm,jxj ,(4.4)

where xj ∈ [0, 1], τm,j > 0, and wm > 0, find a shorter optimal representation of
the same form. Namely, if the number of terms in (4.4) is not optimal for a given
accuracy ε, find g,

g(x1, x2, . . . xN ) =

M̂
∑

m=1

ŵme
−

P

N
j=1 τ̂m,jxj ,(4.5)

||f − g|| ≤ ε, such that M̂ < M .

1. We have solved this problem for N = 1 in [14] and have developed a pre-
liminary algorithm for N = 2. We now understand analytic and geometric
ingredients of this problem. We computed optimal representations in a num-
ber of two and three dimensional examples and, currently, we are developing
further additional components of the algorithm. For example, for dimen-
sions greater than two, we need to group the initial exponents according to
their spatial distribution, and then solve several subproblems. Our results
for N = 2 should lead to many applications beyond the scope of this project
(e.g., generalized Gaussian quadratures for exponentials for 2D domains, thus
extending results in [12]).

2. We have developed a new “suboptimal” reduction algorithm and computed
several examples for dimension N = 3. One of the examples is the numerical
construction of an approximation of the Coulomb Green’s function. This case
is of interest for both Task 1 and Task 2. Such Green’s function (which is not
a convolution) has an analytic expression known since 1960s providing for us
a mechanism to verify our results. We note that the analytic expression itself
(e.g. [34],[40]) has not been used in computations.

3. We have now a mathematical framework (with some proofs) for the construc-
tion of the multiparticle Green’s functions for the so-called Rollnik classes of
potentials (see [5]). Such potentials (or their approximations) are sufficient
for computations with bound states. This is important on a conceptual and
on a practical level (e.g., we obtain convergent algorithms).

4. Our approach is applicable to multi-particle computations (in contrast to
using the Gross-Pitaevskii equation) for Bose-Einstein Condensate (BEC).

We now provide a more detailed description of the results.

4.1. Green’s functions for a central potential. For the Hamiltonian

H = −1

2
∇2 − V (r),

let us consider the Green’s functions

G(µ) = (H− µI)−1

and

G0(µ) = (−1

2
∇2 − µI)−1.
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Proposition 4.1. Let V be a potential of the form

V (||y||) =
∑

k

vke
−uk||y||

2

,

and µ < inf σ(H), where inf σ(H) is the lower bound of the spectrum of H.
Then for any ε > 0 and δ > 0, δ < ||x− y|| ≤ 1, the Green’s function G(µ,x,y)

has an approximation G̃(µ,x,y) ,||G(µ,x,y)− G̃(µ,x,y)|| ≤ ε/||x− y||, where

G̃(µ,x,y) =
∑

m

wm e−am||x||2−bm||x−y||2−cm||y||2 .(4.6)

Remark. If instead of the eigenvalue problem

HΨ = λΨ,(4.7)

we solve

G(µ)Ψ =
1

λ− µΨ,

then (E0−µ)−1 is the largest eigenvalue, where E0 is the eigenvalue corresponding
to the ground state of (4.7). Thus we have ||G(µ)||2 = (E0 − µ)−1 = dist(µ, σ(H)).
We can use the power method to find eigenvalues and the overall approach is simply
the inverse power method.

The Green’s function G satisfies the Lipmann-Schwinger equation,

G(µ) = G0(µ) +G0(µ)V G(µ),

from which we obtain

G = (I −G0V )−1G0 = G
1/2
0 (I −G1/2

0 V G
1/2
0 )−1G

1/2
0 .

It follows from Proposition 4.4 in Appendix A, that the operator I − G1/2
0 V G

1/2
0

is positive definite. Also, it readily follows that the operator G
1/2
0 V G

1/2
0 is positive

definite as well since V is an operator of multiplication by a positive function. This,

in turn, implies that ||I −G1/2
0 V G

1/2
0 || < 1.

Following Proposition 4.2 in Appendix A, we have

G = G
1/2
0

∞
∏

j=0

(I + [G
1/2
0 V G

1/2
0 ]2

j

)G
1/2
0 .(4.8)

Let us examine the operator G
1/2
0 V G

1/2
0 . Using Proposition 4.5, we have

[G
1/2
0 V G

1/2
0 ](x, z) =

1

π4

∑

k

vk

∫ ∞

−∞

ds1

∫ ∞

−∞

ds2 e
− 1

4µ2(e−2s1+e−2s2)+2(s1+s2)

∫

e−||x−y||2e2s1
e−uk||y||

2

e−||y−z||2e2s2
dy.

Using

∫

R

exp[−
N
∑

j=1

aj(xj − y)2]dy =

√

π
∑N

j=1 aj

exp[− 1
∑N

l=1 al

∑

i>j

aiaj(xi − xj)
2],

(4.9)
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and 4.1, we obtain

[G
1/2
0 V G

1/2
0 ](x, z) =

1

π5/2

∑

k

vk

∫ ∞

−∞

ds1

∫ ∞

−∞

ds2
e−

1
4µ2(e−2s1+e−2s2)+2(s1+s2)

(e2s1 + uk + e2s2)3/2

× e
−

e2s1uk

e2s1+e2s2+uk

||x||2− e2s1e2s2

e2s1+e2s2+uk

||x−z||2−
e2s2uk

e2s1+e2s2+uk

||z||2

.

This double integral can be discretized using the trapezoidal rule in two dimensions,
similar to the construction in [29, 30, 13], to yield an approximate representation of
the form stated in (4.14). At this point we are not counting the necessary number

of terms, just noting that they are of the desired form. The powers of T0, T
2j

0 ,
as needed in (4.8), will have a similar integral representation with the number of
integrals doubling as we step from j to j + 1. Again, using the trapezoidal rule, we
obtain terms of the desired form and, as the number of retained terms in (4.8) is
finite for a given accuracy ε, the process will terminate after a finite number of terms.
Since we use potentials without singularities, the norm G(µ,x,y)− G̃(µ,x,y) will
be controlled by selecting the parameters of the trapezoidal rule. This argument
provides the form of the Green’s function but not the number of terms.

In order to make this computation practical, we turn to the second part of
Proposition 4.2. We have a recursion,

Yn+1 = 2Yn − Yn (I −G1/2
0 V G

1/2
0 )Yn, with Y0 = I,

where Yn → (I −G1/2
0 V G

1/2
0 )−1.

Let us use a representation of the kernel G
1/2
0 via Gaussians as it follows from

Appendix B,

G
1/2
0 (µ,x− y) =

∑

l

gle
−sl||x−y||2 .

Computing G
1/2
0 V G

1/2
0 , we have an approximation

∑

l,k,l′

glvkgl′

∫

e−sl||x−y||2e−uk||y||
2

e−sl′ ||y−z||2dy(4.10)

Using (4.9), we arrive at

∑

l,k,l′

glvkgl′(
π

sl + sl′ + uk
)3/2 e

−
sluk

sl+s
l′

+uk
||x||2

e
−

sls
l′

sl+s
l′

+uk
||x−z||2

e
−

s
l′

uk
sl+s

l′
+uk

||z||2

,

(4.11)

which is of the form in (4.14). We now need to reduce the number of terms in (4.11)
and, for this reason, arrive at the following problem: given a function

f(x) =
∑

k

wke
−a1

kx1−a2
kx2−a3

kx3 ,

approximate f by a function f̃ of the same form but with a fewer number of terms.
We note that the form in (4.14) is preserved under further iteration, namely, if

we compute the integral (for a single term),

Ilkm = glvkwm

∫

e−sl||x−y||2e−uk||y||
2

e−τm||y||2−σm||y−z||2−ξm||z||2dy,(4.12)



SEPARATED REPRESENTATIONS FOR COMPUTATIONAL MATERIALS SCIENCE 14

and use (4.9), we obtain

Ilkm = glvkwm(
π

clkm
)3/2 e

−
sl(uk+τm)

clkm
||x||2−

slσm
clkm

||x−z||2−(ξm+
(uk+τm)σm

clkm
)||z||2

,(4.13)

where clkm = sl + uk + σm + τm. This gives us

τ̂lkm = −sl(uk + τm)

clkm
, σ̂lkm =

slσm

clkm
, ξ̂lkm = ξm +

(uk + τm)σm

clkm
,

and

ŵlkm = glvkwm(
π

clkm
)3/2,

as new parameters.

4.2. Green’s functions for multiparticle systems.

4.2.1. Confining potential. Consider the Hamiltonian of the system with K nuclei,

H =

Ne
∑

j=1

(−1

2
∇2

j −
K
∑

k=1

Zk

||xj − rk||
).

The Green’s function,

G(µ) = (H− µI)−1,

can be approximated by

G(µ,x1,y1,x2,y2, . . . ) =
∑

m

wm

∏

j

e−
P

k
τm,k||xj−rk||

2−σm||xj−yj ||
2−

P

k
ξm,k||yj−rk||

2

,

(4.14)

for µ < E0, where E0 is the smallest eigenvalue of H .

4.2.2. A Hamiltonian with the electron-electron interaction. Consider the Hamil-
tonian of the system with K nuclei and Ne electrons,

H =

Ne
∑

j=1

(−1

2
∇2

j −
K
∑

k=1

Zk

||xj − rk||
) +

∑

i>j

1

||xi − xj ||
.

The Green’s function,

G(µ) = (H− µI)−1,

can be approximated by

G(µ,x1,y1,x2,y2, . . . ) =
∑

m

wm e−
P

j [
P

k am,k||xj−rk||
2+

P

k bm,k||yj−rk||
2]

× e−
P

ij cm,ij ||xi−yj ||
2−

P

i>j [gm,ij ||xi−xj ||
2+fm,ij ||yi−yj ||

2],(4.15)

for µ < E0, where E0 is the smallest eigenvalue of H . We conjecture that it may
be possible to simplify,

G(µ,x1,y1,x2,y2, . . . ) =
∑

m

wm e−
P

j

P

k
am,k(||xj−rk||

2+||yj−rk||
2)

× e−
P

ij
cm,ij ||xi−yj ||

2−
P

i>j
gm,ij(||xi−xj ||

2+||yi−yj ||
2),(4.16)
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4.2.3. Spectral Projectors. Representation of a spectral projector computed for the
Green’s function has the structure as the Green’s function itself (unlike the eigen-
functions, which need additional terms or factors to account for momentum indices).
We construct the spectral projector from the sign function using

Pµ(x,y) =
∑

λj<µ

ψj(x)ψ̄j(y) = (I − sign(H− µI))/2,(4.17)

where ψj is an orthonormal basis of eigenfunctions and the sign function is defined
on (−∞,∞) by

sign(λ) =







1 λ > 0
0 λ = 0
−1 λ < 0

.(4.18)

If an operator or its projection on the discrete spectrum are written as

H(x,y) =
∑

j

λjψj(x)ψ̄j(y)(4.19)

with λj real, then

sign(H)(x,y) =
∑

j

sign(λj)ψj(x)ψ̄j(y).(4.20)

4.2.4. Recursive construction. We use a polynomial recursion (see e.g. [4, 33, 7])
to compute sign(H):

Y0 = H/||H||2
Yk+1 = (3Yk − Y3

k)/2, k = 0, 1, . . .
(4.21)

Other polynomials may be used in place of the one above; see [33] for a discussion
of the various choices. It is easy to demonstrate that Yk → sign(H) in (4.21) (see
e.g. [7]). The number of iterations needed for (4.21) to converge to accuracy ε is
O(c log2 κ+ log2 log2(1/ε)), where κ is the condition number of Y0.

We note that computation of the projections via (4.21) has qualitatively different
properties than that of the direct computation of individual eigenfunctions. As in
the case of the Green’s function the iteration in (4.21) does not change the form of
the Gaussian representation.

4.2.5. Bound state solutions of the Lippman-Schwinger Equation. Consider a self-
adjoint operator

H = H0 − V(4.22)

and the Green’s function

G(z) = (H− zI)−1,

for z /∈ σ(H), where σ(H) denotes the spectrum of the operator H. Assuming
z /∈ σ(H0) and introducing

G0(z) = (H0 − zI)−1,

we (formally) have the Lippman-Schwinger equation for G,
G = G0 + G0VG,

or G = (I − G0V)−1G0. Alternatively, we can write

G = G1/2
0 (I − G1/2

0 VG
1/2
0 )−1G1/2

0 .
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To construct (I − G1/2
0 VG

1/2
0 )−1, we will use

Proposition 4.2. 1. If B is a bounded positive definite operator, then its inverse
has a product representation

B−1 = κ
∞
∏

j=0

[I + (I − κB)2
j

],(4.23)

where κ < 1/||B||.
2. The iteration

Yn+1 = 2Yn − Yn B Yn, with Y0 = κI,
converges quadratically to the inverse, Yn → B−1 as n→∞ and

Yn+1 = κ

n
∏

j=0

[I + (I − κB)2
j

], n = 0, 1, . . . .

Proof. We have B−1 = κ(I − (I − κB))−1. Since B is a bounded positive definite
operator, selecting κ < 1/||B|| implies that ||I − κB|| < 1. Using the product form
of the converging series B−1 = κ[I +(I −κB) + (I −κB)2 + . . . ], we obtain (4.23).
The iteration simply generates the same product as in (4.23).

Proposition 4.3.

1. Let B be a bounded operator. If the inverse operator B−1 exists, then it has
a product representation

B−1 = κ

∞
∏

j=0

[I + (I − κB∗B)2
j

]B∗,(4.24)

where κ < 1/||B∗ B||.
(a) The iteration

Yn+1 = 2Yn − Yn BYn, with Y0 = κB∗,

converges quadratically to the inverse, Yn → B−1 as n→∞ and

Yn+1 = κ
n
∏

j=0

[I + (I − κB∗B)2
j

]B∗, n = 0, 1, . . . .

Proof. We have B−1 = (B∗B)−1B∗. Since B∗B is a bounded positive definite oper-
ator, we use Proposition 4.2 to compute (B∗B)−1.

Proposition 4.4. If the potential V is in the Rollnik class and z /∈ σ(H), then

B = I −G1/2
0 (z)VG1/2

0 (z) is a bounded operator. If z ∈ R and z < min(σ(H)), then

B is a positive definite operator and ‖G1/2
0 (z)VG1/2

0 (z)‖ < 1.

Proof. Let us consider the inner product (Bx, x) = (x, x)+(VG1/2
0 x,G1/2

0 x). Setting

y = G1/2
0 x, we have

(Bx, x) = (G−1/2
0 y,G−1/2

0 y) + (Vy, y) = (G−1
0 y, y) + (Vy, y) = ((H− zI)y, y) > 0

for any x. Since G1/2
0 (z)VG1/2

0 (z) is also positive definite implies that ‖G1/2
0 (z)VG1/2

0 (z)‖ <
1.
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Using Proposition we have that if B is bounded, then

G = κG1/2
0

∞
∏

j=0

(I + [(1− κ)I + κG1/2
0 VG

1/2
0 ]2

j

)G1/2
0 .(4.25)

If ‖G1/2
0 (z)VG1/2

0 (z)‖ < 1 then ‖B‖ < 1 and we choose κ = 1 to obtain from (4.25)

G = G1/2
0

∞
∏

j=0

(I + [G1/2
0 VG1/2

0 ]2
j

)G1/2
0 ,(4.26)

an alternative of the usual Born series.

4.2.6. Integral Representation and Approximation of Gα
0 . In problems of quantum

mechanics we choose

H0 = −1

2
∇2,

and construct an approximation of the kernel of Gα
0 , α > 0, where

G0(λ) = (H0 − λI)−1.

We first recall the kernel of et∇2

, the heat kernel,

Ket∇2 (x− y) = (4πt)−
3
2 e−

1
4‖x−y‖2t−1

,(4.27)

and the integral representation of the positive powers of a self-adjoint positive
definite operator,

L−α =
1

Γ(α)

∫ ∞

0

e−tLtα−1dt.

We have for λ = − 1
2µ

2 < 0 ,

Gα
0 = (−1

2
∇2 +

1

2
µ2I)−α =

2α

Γ(α)

∫ ∞

0

et∇2

e−µ2ttα−1dt.

Using (4.27), we have

Gα
0 (x− y) =

2α

Γ(α)(4π)
3
2

∫ ∞

0

e−µ2te−
1
4t

‖x−y‖2

tα− 5
2 dt.(4.28)

Since
∫ ∞

0

e−a2te−
1
4t

b2tc−1dt = 21−c(
b

a
)cKc(ab) = 21−c(

b

a
)cK−c(ab),(4.29)

where Kα is the modified Bessel function of the second kind. This formula follows
from [27, Formula 8.432(6)] ,

Kc(z) = 2c−1z−c

∫ ∞

0

e−te−
1
4t

z2

tc−1dt, for | arg z| < π

2
, <z2 > 0.

Thus, Gα
0 is a radial function that can be explicitely described as

Gα
0 (x) =

2−
1
2

Γ(α)π
3
2

(
µ

r
)

3
2−αK 3

2−α(µr),

where r = |x|. In particular,

G0(x) =
1

2π

e−µ|x|

|x|



SEPARATED REPRESENTATIONS FOR COMPUTATIONAL MATERIALS SCIENCE 18

and

G2
0(x) =

1

2πµ
e−µ|x|.

To approximate Gα
0 as a sum of Gaussians, we change variables t = e−2s/4 in (4.28)

to obtain

Proposition 4.5. The kernel of Gα
0 has an integral representation

Gα
0 (x− y) =

21−α

Γ(α)π
3
2

∫ ∞

−∞

e−‖x−y‖2e2s

e−
1
4µ2e−2s+(3−2α)sds.(4.30)

For α = 1 we obtain from (4.30) a familiar representation (see [29, 30, 13]),

G0(x− y) =
1

π
3
2

∫ ∞

−∞

e−‖x−y‖2e2s

e−
1
4 µ2e−2s+sds,

and, for α = 1/2, an integral representation for the kernel of G1/2
0 ,

G1/2
0 (x− y) =

2
1
2

π2

∫ ∞

−∞

e−‖x−y‖2e2s

e−
1
4µ2e−2s+2sds.

5. Results for Task 3: Multiparticle Schrödinger Equation

This part of the project is the beginning of the program to develop accurate
methods for solving equations of multiparticle quantum mechanics. In this section
we will descibe what was accomplished, compare with existing state of the art, and
indicate directions of further development.

Our goal was specifically to address the issue of size-consistency. We first devel-
oped a“center-of-mass”principle upon which an algorithmic size-consistent method
can be built. We were then advised that the inter-electron cusp was a crucial is-
sue, and so we developed a principle upon which a method capturing this cusp can
be built. As these methods were becoming large and complex, we went back and
worked on the details of the basic method upon which they were grown, namely the
use of separated representations for wavefunctions. In the next section we give a
technical introduction to the multiparticle Schrödinger, and the outline of how sep-
arated representations can be used to approximate the wavefunction. The following
section sketches the method for size-consistency, and the final section comments on
the inter-electron cusp.

5.1. Technical introduction; Approximating the Wavefunction with an

unconstrained sum of Slater Determinants. The multiparticle Schrödinger
equation is the basic governing equation in quantum mechanics. We consider the
time-independent case, and fix the nuclei according to the Born-Oppenheimer ap-
proximation, so the equation describes the steady state of an interacting system of
electrons. For each of the N electrons in the system there are three spatial vari-
ables r = (x, y, z), and a discrete spin variable σ taking the values {− 1

2 ,
1
2}, which

we combine and denote (r, σ) by γ. The Hamiltonian operator H is a sum of a
kinetic energy operator T , a nuclear potential operator V , and an electron-electron
interaction operator W , defined by

H = T + V +W = −1

2

N
∑

i=1

∆i +
N
∑

i=1

v(ri) +
−1

2

N
∑

i=1

N
∑

j 6=i

1

‖ri − rj‖
,(5.1)
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where ∆i is the three-dimensional Laplacian acting in the variable ri and v(r) is a
sum of terms of the form za/‖r−Ra‖ from a nucleus at position Ra with charge
za. The antisymmetric eigenfunctions of H represent electronic states of the system
and are called wavefunctions. Antisymmetric means that under the exchange of any
two coordinates, the wavefunction is odd, e.g. ψ(γ2, γ1, . . . ) = −ψ(γ1, γ2, . . . ). The
bound-state wavefunctions have negative eigenvalues, and are of greatest interest, so
we will focus on the wavefunction with the most negative eigenvalue. In summary,
our goal is to find the most negative (discrete) eigenvalue

Hψ = λψ ,(5.2)

subject to the antisymmetry condition on ψ.
Analytic methods can give qualitative results about its solutions, and determine

limiting cases, but most quantitative results must be obtained numerically. Al-
though the equation is a ‘simple’ eigenvalue problem, its numerical solution presents
several serious difficulties, among them the large number of variables and the an-
tisymmetry condition on the solution. The simplest method that addresses these
two difficulties is Hartree-Fock (HF), which uses the antisymmetrization of a single
product to approximate the N -particle wavefunction, i.e.,

ψHF = A
N
∏

i=1

φi(γi) .(5.3)

Any approximation ψ̃ to the wavefunction ψ can be substituted into

〈Hψ̃, ψ̃〉
‖ψ̃‖

(5.4)

to obtain an upper bound on the lowest value of λ that solves (5.2). Substituting
(5.3) into (5.4), one can derive a system of equations for φi to minimize (5.4). The
resulting ψHF will best approximate ψ, in the sense of providing the best estimate
(5.4).

To improve upon HF, it is natural to consider a sum of products

ψ(r) = A
r
∑

l=1

sl

N
∏

i=1

φl
i(γi) .(5.5)

The coefficients sl are not strictly necessary, but they allow us to assume ‖φl
i‖ = 1.

Many methods are based on this form, and the distinction is in how they use it. The
Configuration Interaction (CI) method (see e.g. [48]) chooses the functions φl

i from
a preselected master set of orthogonal functions and decides on a large number r
of combinations to consider, based on excitation level. Substituting (5.5) into (5.4)
leads to a matrix eigenvalue problem that can be solved for the scalar coefficients
sl. The Multi-Configuration Self-Consistent Field (MCSCF) method (e.g. [24, 17]),
chooses a pattern of excitations similar to CI, but then solves for the master set
of orthogonal functions as well as the scalar coefficients. Many variations and
combinations of these methods have been developed, and indeed there is a whole
industry in producing them.

We demonstrate a method that also uses a wavefunction of the form (5.5) but
without constraints such as orthogonality on the φl

i. By removing these constraints
we produce much better approximations at much smaller r than existing methods
allow. In another context [11] we have given examples where removing constraints
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produces expansions that are exponentially more efficient, i.e. r = N instead of 2N

or r = logN instead of N . For example, in our approach we can have a two-term
representation

φ1(γ1)φ2(γ2) · · ·φN (γN )

+c [φ1(γ1) + φN+1(γ1)][φ2(γ2) + φN+2(γ2)] · · · [φN (γN ) + φ2N (γN )] ,(5.6)

where {φj}2N
j=1 form an orthonormal set. To represent (5.6) while requiring all

factors to come from a master orthogonal set would force one to multiply out the
second term and thus obtain a representation with 2N terms. It is common sense
that removal of constraints could produce better results, and steps in that direction
have been taken (e.g.[46, 1, 23, 19, 20, 52, 42]). These works, however, were only
able to partially remove the constraints, and so, we claim, did not achieve the full
potential.

We will use a Green’s function iteration to move a trial wavefunction toward the
minimum of (5.4) without using (5.4) directly. This iteration was introduced in
[36, 35] and used in e.g.[30]. Define the Green’s function

Gµ = (T − µI)−1 ,(5.7)

for µ < 0. The Green’s function iteration is

gn = −Gµn
[(V +W)fn]

µn+1 = µn − 〈(V +W)fn, fn − gn〉/‖gn‖2(5.8)

fn+1 = gn/‖gn‖.
The Green’s function iteration is essentially an inverse power method. The conver-
gence rate is only linear, but if the initial µ can be chosen near to but less than
the lowest eigenvalue, then the error will decrease by a substantial fraction at each
iteration, and not many iterations will be needed. We use I to denote the number
of Green’s function iterations needed.

We use approximate wavefunctions of the form (5.5), with r fixed. The iteration
(5.8) does not directly produce an approximation of the same form, so we modify
it by defining gn to be the function of the form (5.5) that minimizes

‖gn − (−Gµn
[(V +W)fn])‖.(5.9)

In order to assure convergence to an antisymmetric solution, we use the pseudo-
norm induced by the pseudo inner product 〈·, ·〉A = 〈A(·),A(·)〉, as we did in [11].
Constructing gn is the most challenging part of the method, and requires the bulk
of our effort. To simplfy notation, we now suppress the iteration index n and set
ψ = fn and ψ̃ = gn.

We begin with some approximation ψ̃ (such as ψ itself) and will iteratively
improve it. The outermost loop of our iteration is simply to repeat our refinement
until it appears that ψ̃ has converged. For the computational cost estimates we
denote the number of repetitions byK. To refine our representation we loop through
the variables (electrons). The functions in variables other than the current variable
are fixed, and the functions in the current variable will be modified to minimize the
overall error ‖ψ̃ − ψ‖A. This Alternating Least-Squares (ALS) approach is well-
known (see e.g. [31, 39, 41, 16, 18, 49]). We will alternate through the directions,

but for ease of exposition we describe the k = 1 case. So, φ̃l
k is fixed for k > 1, and

we will solve for the values of φ̃l
1 for all l.
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To refine in the current variable, we set up and solve a linear least-squares
problem. The normal equations for a least-squares problem are derived by taking a
gradient with respect to the free parameters and setting this equal to zero. As long
as ψ̃ is linear and not degenerate in these parameters, the resulting equations are
linear and have a unique solution. Usually these free parameters are coefficients of
the representation in some basis. We instead take the parameters to be the point
values of our functions φl

1, or, formally, as the coefficients of the point evaluation
functional 〈γ〉. The formulas that we derive can be used with a fixed basis, but are
stated independent of the basis. We still obtain linear normal equations

Ax = b ,(5.10)

but now b(l) is a function of γ, x(l′) is a function of γ′, and A(l, l′) is an integral
operator mapping functions of γ′ to functions of γ. The kernel of A is defined by

A(l, l′)(γ, γ′) =

〈

〈γ′〉
N
∏

i=2

φ̃l′

i , 〈γ〉
N
∏

i=2

φ̃l
i

〉

A

,(5.11)

where the point evaluation functionals are acting in the i = 1 direction. The
functions in b are defined by

b(l)(γ) =
r
∑

m

sm

〈

−Gµ[V +W ]
N
∏

i=1

φm
i , 〈γ〉

N
∏

i=2

φ̃l
i

〉

A

.(5.12)

Once A and b have been constructed, we will apply the Conjugate Gradient iterative
method (see e.g. [26]) to solve (5.10). We initialize with r = b − Ax, v = r, and
c = 〈r, r〉, and then the core of the method is the sequence of assignments z← Av,
t← c/〈v, z〉, x← x+ tv, r← r− tz, d← 〈r, r〉, v← r+(d/c)v, and c← d, applied
iteratively. We use S to denote the number of conjugate gradiant iterations needed.
Thus x is constructed using only matrix-vector products and vector additions, all
which are compatible with our formulation with integral operators. The conjugate
gradient method applies only to positive-definite operators. Our operator A is only
semidefinite due to the nullspace in the antisymmetric pseudonorm. Fortunately, b

was computed with the same pseudonorm and has no component in the nullspace
of A.

One advantage of using this iterative method with integral operators is that our
algorithm is “basis-free”. The representation of x can naturally be adaptive in γ,
for example refining near the nuclei as indicated by the refinement in b. For the
estimates of computational cost, we useM to denote the cost to represent a function
of γ, or integrate such a function. The antisymmetry contraint requires N ≤ M ,
and in general we expect M to be much larger than N . For our numerical results,
we use adaptive polynomial multiwavelets, following [28, 30]. In those works it was
shown that this basis effectively eliminates basis-set error within HF.

We are left with the problem of how to construct A in (5.11) and b in (5.12). We
haved develop the machinery and algorithms for computing these antisymmetric
inner products. Our formulation uses low-rank perturbations of matrices, thus
avoiding cofactor expansions.

The computational cost for the whole method is acceptable. As noted above, the
cost depends on N , r, M , I, K, and S. Although S in theory could be as many as
rM , we have a very good starting point, and so expect only a very small constant
number to be needed. We use M logM to denote the cost to convolve a function
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of γ with 1/‖r‖. Some Poisson solvers achieve this complexity, but this cost may
vary with the choice of basis. We use L to denote the number of terms used to
approximate the Green’s function with Gaussians. The final computational cost is
then

O(KIr2N2[L(N +M logM) + S(N +M)]).(5.13)

For comparison, the cost to evaluate a single instance of Löwdin’s rules is O(N2(N+
M)). The size r needed in practice, and how it depends on the various parameters
in the problem, is still an open question.

We are working on initial implementation to verify the correctness of the formulas
and algorithms that we have developed.

5.2. Algorithmic Size-Consistency. Consider the situation where our system
consists of K non-interacting (i.e. well-separated) subsystems, each with N elec-
trons. Suppose that each subsystem has a separated representation ψi. The wave-
function for the entire system is

ψ ≈
K
∏

j=1

ψi.

Its inherent complexity grows linearly withK. If each ψi has separation rank r, then
in order to represent the overall wavefunction in the separated representation we
have to multiply out, and so obtain rK terms. Thus, this representation is not size-
consistent. (The terms “size-extensivity” and “size-consistency” are often confused
in the literature, but it appears that we actually address “size-consistency”.) For
a fixed accuracy, we want the computational complexity to scale (nearly) linearly
with system size. In classical particle systems, such scaling can be achieved via
organizing particles into hierarchical groups and computing the interaction between
these groups via e.g., multipole expansions. In the simplest case, this amounts to
replacing �

�
�
�• •

•
••
•

Active

�
�

�
�••

•
•
•
•

Distant

with �
�

�
�• •

•
••
•

Active

•

Summary

The notion of groups is fairly straightforward in quantum mechanics, and in the
non-interacting case we can simply not multiply out the component wavefunctions,
and thus obtain a size-consistent representation. Non-interacting systems are not
very interesting of course, but they give us the inspiration to use the form

ψ ≈
r
∑

l=1

K
∏

j=1

ψl
i

for interacting systems. One could plug this back into itself and do more levels.
In quantum-mechanical systems, the interaction between particles is much more

complicated, mainly due to the antisymmetry constraint which allows “exchange”
of particles. The interactions are thus nonlocal and nonlinear, so a straightforward
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generalization of the approach to classical particle systems is not available. In
particular, if we have a geometry like'

&
$
%

Active

'
&

$
%

Neighbor

'
&

$
%

Distant

then we cannot compute the effect of the distant group on the active group without
accounting for exchange via the neighbor group. Within our ALS method, the
key ingredient for achieving size-consistency is to have the marginal cost of each
antisymmetric inner product be independent of the total number of groups, so that
the total cost scales (nearly) linearly in K. This goal can be accomplished if the
effect of distant groups can be summarized and then re-used.

We now demonstrate how to summarize in the case of three groups, by computing

〈

(
∑

l1

Φl1
1 )(
∑

l2

Φl2
2 )(
∑

l3

Φl3
3 ),(

∑

l′1

Φ̃
l′1
1 )(
∑

l′2

Φ̃
l′2
2 )(
∑

l′3

Φ̃
l′3
3 )

〉

A

.

We use Φl1
1 to denote the l1 term in group 1, and so on. We define L(Φ̃

l′1
1 ,Φ

l1
1 ) to be

the matrix of inner products of the single electron functions, as used in Löwdin’s
rules. Using Löwdin’s rules and our assumption on supports, we have

∑

l1,l′1

∑

l2,l′2

∑

l3,l′3

∣

∣

∣

∣

∣

∣

∣

L(Φ̃
l′1
1 ,Φ

l1
1 ) L(Φ̃

l′1
1 ,Φ

l2
2 ) 0

L(Φ̃
l′2
2 ,Φ

l1
1 ) L(Φ̃

l′2
2 ,Φ

l2
2 ) L(Φ̃

l′2
2 ,Φ

l3
3 )

0 L(Φ̃
l′3
3 ,Φ

l2
2 ) L(Φ̃

l′3
3 ,Φ

l3
3 )

∣

∣

∣

∣

∣

∣

∣

.

The off-diagonal blocks should have rank approximately the number of chemical
bonds between the groups. To demonstrate the principle, we will suppose that the
rank is one. Applying the inverse of the diagonal blocks, we obtain

∑

l1,l′1

∑

l2,l′2

∑

l3,l′3

|L(Φ̃
l′1
1 ,Φ

l1
1 )||L(Φ̃

l′2
2 ,Φ

l2
2 )||L(Φ̃

l′3
3 ,Φ

l3
3 )|

∣

∣

∣

∣

∣

∣

∣

I u
l1l′1l2
12 (v

l1l′1l2
12 )∗ 0

u
l1l2l′2
21 (v

l1l2l′2
21 )∗ I u

l2l′2l3
23 (v

l2l′2l3
23 )∗

0 u
l2l3l′3
32 (v

l2l3l′3
32 )∗ I

∣

∣

∣

∣

∣

∣

∣

.

We now transform the determinant using the following lemma.

Lemma 5.1. (Determinant of a Low-Rank Perturbation of the Identity) Let {uq}Qq=1

and {vq}Qq=1 be two sets of vectors. Then

∣

∣

∣

∣

∣

I +

Q
∑

q=1

uqv
∗
q

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + v∗
1u1 v∗

1u2 · · · v∗
1uQ

v∗
2u1 1 + v∗

2u2 · · · v∗
2uQ

...
...

. . .
...

v∗
Qu1 v∗

Qu2 · · · 1 + v∗
QuQ

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Applying this lemma the final determinant becomes
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 (v
l1l2l′2
21 )∗u

l1l′1l2
12 0 0

(v
l1l′1l2
12 )∗u

l1l2l′2
21 1 0 (v

l2l3l′3
32 )∗u

l1l2l′2
21

(v
l1l′1l2
12 )∗u

l2l′2l3
23 0 1 (v

l2l3l′3
32 )∗u

l2l′2l3
23

0 0 (v
l2l′2l3
23 )∗u

l2l3l′3
32 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which can be expanded as

∣

∣

∣

∣

∣

1 (v
l1l2l′2
21 )∗u

l1l′1l2
12

(v
l1l′1l2
12 )∗u

l1l2l′2
21 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 (v
l2l3l′3
32 )∗u

l2l′2l3
23

(v
l2l′2l3
23 )∗u

l2l3l′3
32 1

∣

∣

∣

∣

∣

− ((v
l1l′1l2
12 )∗u

l2l′2l3
23 )((v

l1l2l′2
21 )∗u

l1l′1l2
12 )((v

l2l′2l3
23 )∗u

l2l3l′3
32 )((v

l2l3l′3
32 )∗u

l1l2l′2
21 ).

Inserting this expansion and rearranging, the first term yields

∑

l1,l′1

|L(Φ̃
l′1
1 ,Φ

l1
1 )|
∑

l2,l′2

|L(Φ̃
l′2
2 ,Φ

l2
2 )|
∣

∣

∣

∣

∣

1 (v
l1l2l′2
21 )∗u

l1l′1l2
12

(v
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12 )∗u

l1l2l′2
21 1

∣

∣

∣

∣

∣





∑

l3,l′3

|L(Φ̃
l′3
3 ,Φ

l3
3 )|
∣

∣

∣

∣

∣

1 (v
l2l3l′3
32 )∗u

l2l′2l3
23

(v
l2l′2l3
23 )∗u

l2l3l′3
32 1

∣

∣

∣

∣

∣



 ,

and the second term yields

−
∑

l1,l′1

∑

l2,l′2

((v
l1l2l′2
21 )∗u

l1l′1l2
12 )|L(Φ̃

l′1
1 ,Φ

l1
1 )||L(Φ̃

l′2
2 ,Φ

l2
2 )|

(v
l1l′1l2
12 )∗





∑

l3,l′3

u
l2l′2l3
23 ((v

l2l′2l3
23 )∗u

l2l3l′3
32 )|L(Φ̃

l′3
3 ,Φ

l3
3 )|(vl2l3l′3

32 )∗



u
l1l2l′2
21 .

In both cases the sum over group three can be performed, resulting in summary
quantities that play the role of multipole expansions. Schematically we have'

&
$
%

Active

'
&

$
%

Neighbor

•
•

�

�

Summaries

Given an “active” group, these averaged quantities and quantities associated with
its immediate neighbors are all that is needed to compute the wavefunction for
that active group. The derivation of these quantities and their use is complete (for
simple cases), and we have begun the implementation of relevant algorithms.

5.3. Interelectron-cusps. We note that the representation (5.5) does not account
for the inter-electron cusp (see e.g.[47, 43, 38, 44, 45, 37]). As with CI methods, we
may still be able to achieve small error in the energy difference of two configurations,
which is often the quantity of interest in Chemistry. To achieve high accurary in the
wavefunction we are developing an extension to (5.5) that incorporates the cusp.
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We consider wavefunctions represented in the form

ψ ≈
P
∑

p=0









∑

i6=j

wp(‖ri − rj‖)





( rp
∑

l=1

N
∏

k=1

φlp
j (r)

)





and have developed many of the algorithms needed to use them. The algorithms
needed are quite complex, however, so we are deferring their development.

The size-consistent algorithms will eventually need to incorporate the effect of
cusps as well, so that we can achieve high-accuracy and size-consistency at the same
time.

6. Papers in preparation

As we have obtained a large number of new results, we have several papers in
preparation. We list them here.

• Tentative title: “Multiresolution separated representations of lattice sums”,
G. Beylkin, L. Monzón and R. Harrison.
(Multiresolution separated representations of Green’s functions satisfying bound-
ary conditions and associated fast algorithms).

• Tentative title: “Separated representations of lattice sums for oscillatory Green’s
functions”, G. Beylkin, L. Monzón and R. Harrison.
(Separated representations for oscillatory Green’s functions).

• Tentative title: “Approximation of multiparticle Green’s functions via sepa-
rated expansions”, G. Beylkin, M. Mohlenkamp, L. Monzón and F. Pérez
(A novel approach and algorithms for constructing accurate approximations
for multiparticle Green’s functions (for energies below scattering states) using
expansions via Gaussians)

• Tentative title: “Multiparticle bound states of Bose-Einstein Condensate”, G.
Beylkin, M. Mohlenkamp, L. Monzón and F. Pérez
(A constructive approach to computing multiparticle bound states for confin-
ing quantum harmonic potential).

• Tentative title: “On approximation of multi-variable functions by exponential
sums”, G. Beylkin and L. Monzón
(A nonlinear approximation of functions of several variables via linear com-
bination of exponentials, an important extension of [14]).

• Tentative title: “Approximating a wavefunction as an unconstrained sum of
Slater determinants”, G. Beylkin, M. Mohlenkamp and F. Pérez
(Methodology for using [11] for quantum-mechanical systems and basic tests
of its efficiency and accuracy.)

• Tentative title: “A center-of-mass principle and algorithmic size-consistency
for the multiparticle Schrödinger equation”, G. Beylkin and M. Mohlenkamp
(Structures and algorithms for size-consistency, and the multipole-like expan-
sions that they reveal.)

• Tentative title: “Capturing the interparticle cusp in the multiparticle Schrödinger
equation”, G. Beylkin and M. Mohlenkamp
(Structures and algorithms for simultaneously capturing the cusps between
all pairs of electrons.)
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